3.318 \(\int \frac {x^{9/2}}{b x^2+c x^4} \, dx\)

Optimal. Leaf size=204 \[ -\frac {b^{3/4} \log \left (-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} c^{7/4}}+\frac {b^{3/4} \log \left (\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} c^{7/4}}+\frac {b^{3/4} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} c^{7/4}}-\frac {b^{3/4} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} c^{7/4}}+\frac {2 x^{3/2}}{3 c} \]

[Out]

2/3*x^(3/2)/c+1/2*b^(3/4)*arctan(1-c^(1/4)*2^(1/2)*x^(1/2)/b^(1/4))/c^(7/4)*2^(1/2)-1/2*b^(3/4)*arctan(1+c^(1/
4)*2^(1/2)*x^(1/2)/b^(1/4))/c^(7/4)*2^(1/2)-1/4*b^(3/4)*ln(b^(1/2)+x*c^(1/2)-b^(1/4)*c^(1/4)*2^(1/2)*x^(1/2))/
c^(7/4)*2^(1/2)+1/4*b^(3/4)*ln(b^(1/2)+x*c^(1/2)+b^(1/4)*c^(1/4)*2^(1/2)*x^(1/2))/c^(7/4)*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 204, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 9, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.474, Rules used = {1584, 321, 329, 297, 1162, 617, 204, 1165, 628} \[ -\frac {b^{3/4} \log \left (-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} c^{7/4}}+\frac {b^{3/4} \log \left (\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} c^{7/4}}+\frac {b^{3/4} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} c^{7/4}}-\frac {b^{3/4} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} c^{7/4}}+\frac {2 x^{3/2}}{3 c} \]

Antiderivative was successfully verified.

[In]

Int[x^(9/2)/(b*x^2 + c*x^4),x]

[Out]

(2*x^(3/2))/(3*c) + (b^(3/4)*ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/(Sqrt[2]*c^(7/4)) - (b^(3/4)*ArcTa
n[1 + (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/(Sqrt[2]*c^(7/4)) - (b^(3/4)*Log[Sqrt[b] - Sqrt[2]*b^(1/4)*c^(1/4)*S
qrt[x] + Sqrt[c]*x])/(2*Sqrt[2]*c^(7/4)) + (b^(3/4)*Log[Sqrt[b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x]
)/(2*Sqrt[2]*c^(7/4))

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1584

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(m + n*p)*(a + b*x^(q -
 p))^n, x] /; FreeQ[{a, b, m, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rubi steps

\begin {align*} \int \frac {x^{9/2}}{b x^2+c x^4} \, dx &=\int \frac {x^{5/2}}{b+c x^2} \, dx\\ &=\frac {2 x^{3/2}}{3 c}-\frac {b \int \frac {\sqrt {x}}{b+c x^2} \, dx}{c}\\ &=\frac {2 x^{3/2}}{3 c}-\frac {(2 b) \operatorname {Subst}\left (\int \frac {x^2}{b+c x^4} \, dx,x,\sqrt {x}\right )}{c}\\ &=\frac {2 x^{3/2}}{3 c}+\frac {b \operatorname {Subst}\left (\int \frac {\sqrt {b}-\sqrt {c} x^2}{b+c x^4} \, dx,x,\sqrt {x}\right )}{c^{3/2}}-\frac {b \operatorname {Subst}\left (\int \frac {\sqrt {b}+\sqrt {c} x^2}{b+c x^4} \, dx,x,\sqrt {x}\right )}{c^{3/2}}\\ &=\frac {2 x^{3/2}}{3 c}-\frac {b \operatorname {Subst}\left (\int \frac {1}{\frac {\sqrt {b}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt {x}\right )}{2 c^2}-\frac {b \operatorname {Subst}\left (\int \frac {1}{\frac {\sqrt {b}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt {x}\right )}{2 c^2}-\frac {b^{3/4} \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{b}}{\sqrt [4]{c}}+2 x}{-\frac {\sqrt {b}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{c}}-x^2} \, dx,x,\sqrt {x}\right )}{2 \sqrt {2} c^{7/4}}-\frac {b^{3/4} \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{b}}{\sqrt [4]{c}}-2 x}{-\frac {\sqrt {b}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{c}}-x^2} \, dx,x,\sqrt {x}\right )}{2 \sqrt {2} c^{7/4}}\\ &=\frac {2 x^{3/2}}{3 c}-\frac {b^{3/4} \log \left (\sqrt {b}-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{2 \sqrt {2} c^{7/4}}+\frac {b^{3/4} \log \left (\sqrt {b}+\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{2 \sqrt {2} c^{7/4}}-\frac {b^{3/4} \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} c^{7/4}}+\frac {b^{3/4} \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} c^{7/4}}\\ &=\frac {2 x^{3/2}}{3 c}+\frac {b^{3/4} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} c^{7/4}}-\frac {b^{3/4} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} c^{7/4}}-\frac {b^{3/4} \log \left (\sqrt {b}-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{2 \sqrt {2} c^{7/4}}+\frac {b^{3/4} \log \left (\sqrt {b}+\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{2 \sqrt {2} c^{7/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 78, normalized size = 0.38 \[ \frac {(-b)^{3/4} \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b}}\right )}{c^{7/4}}-\frac {(-b)^{3/4} \tanh ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b}}\right )}{c^{7/4}}+\frac {2 x^{3/2}}{3 c} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(9/2)/(b*x^2 + c*x^4),x]

[Out]

(2*x^(3/2))/(3*c) + ((-b)^(3/4)*ArcTan[(c^(1/4)*Sqrt[x])/(-b)^(1/4)])/c^(7/4) - ((-b)^(3/4)*ArcTanh[(c^(1/4)*S
qrt[x])/(-b)^(1/4)])/c^(7/4)

________________________________________________________________________________________

fricas [A]  time = 0.74, size = 165, normalized size = 0.81 \[ \frac {12 \, c \left (-\frac {b^{3}}{c^{7}}\right )^{\frac {1}{4}} \arctan \left (-\frac {b^{2} c^{2} \sqrt {x} \left (-\frac {b^{3}}{c^{7}}\right )^{\frac {1}{4}} - \sqrt {-b^{3} c^{3} \sqrt {-\frac {b^{3}}{c^{7}}} + b^{4} x} c^{2} \left (-\frac {b^{3}}{c^{7}}\right )^{\frac {1}{4}}}{b^{3}}\right ) - 3 \, c \left (-\frac {b^{3}}{c^{7}}\right )^{\frac {1}{4}} \log \left (c^{5} \left (-\frac {b^{3}}{c^{7}}\right )^{\frac {3}{4}} + b^{2} \sqrt {x}\right ) + 3 \, c \left (-\frac {b^{3}}{c^{7}}\right )^{\frac {1}{4}} \log \left (-c^{5} \left (-\frac {b^{3}}{c^{7}}\right )^{\frac {3}{4}} + b^{2} \sqrt {x}\right ) + 4 \, x^{\frac {3}{2}}}{6 \, c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(9/2)/(c*x^4+b*x^2),x, algorithm="fricas")

[Out]

1/6*(12*c*(-b^3/c^7)^(1/4)*arctan(-(b^2*c^2*sqrt(x)*(-b^3/c^7)^(1/4) - sqrt(-b^3*c^3*sqrt(-b^3/c^7) + b^4*x)*c
^2*(-b^3/c^7)^(1/4))/b^3) - 3*c*(-b^3/c^7)^(1/4)*log(c^5*(-b^3/c^7)^(3/4) + b^2*sqrt(x)) + 3*c*(-b^3/c^7)^(1/4
)*log(-c^5*(-b^3/c^7)^(3/4) + b^2*sqrt(x)) + 4*x^(3/2))/c

________________________________________________________________________________________

giac [A]  time = 0.18, size = 178, normalized size = 0.87 \[ \frac {2 \, x^{\frac {3}{2}}}{3 \, c} - \frac {\sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{2 \, c^{4}} - \frac {\sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{2 \, c^{4}} + \frac {\sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{4 \, c^{4}} - \frac {\sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{4 \, c^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(9/2)/(c*x^4+b*x^2),x, algorithm="giac")

[Out]

2/3*x^(3/2)/c - 1/2*sqrt(2)*(b*c^3)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) + 2*sqrt(x))/(b/c)^(1/4))/c^
4 - 1/2*sqrt(2)*(b*c^3)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) - 2*sqrt(x))/(b/c)^(1/4))/c^4 + 1/4*sqr
t(2)*(b*c^3)^(3/4)*log(sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/c^4 - 1/4*sqrt(2)*(b*c^3)^(3/4)*log(-sqrt(
2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/c^4

________________________________________________________________________________________

maple [A]  time = 0.01, size = 143, normalized size = 0.70 \[ \frac {2 x^{\frac {3}{2}}}{3 c}-\frac {\sqrt {2}\, b \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )}{2 \left (\frac {b}{c}\right )^{\frac {1}{4}} c^{2}}-\frac {\sqrt {2}\, b \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )}{2 \left (\frac {b}{c}\right )^{\frac {1}{4}} c^{2}}-\frac {\sqrt {2}\, b \ln \left (\frac {x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \sqrt {x}+\sqrt {\frac {b}{c}}}{x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \sqrt {x}+\sqrt {\frac {b}{c}}}\right )}{4 \left (\frac {b}{c}\right )^{\frac {1}{4}} c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(9/2)/(c*x^4+b*x^2),x)

[Out]

2/3*x^(3/2)/c-1/4*b/c^2/(b/c)^(1/4)*2^(1/2)*ln((x-(b/c)^(1/4)*2^(1/2)*x^(1/2)+(b/c)^(1/2))/(x+(b/c)^(1/4)*2^(1
/2)*x^(1/2)+(b/c)^(1/2)))-1/2*b/c^2/(b/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(b/c)^(1/4)*x^(1/2)+1)-1/2*b/c^2/(b/c)^
(1/4)*2^(1/2)*arctan(2^(1/2)/(b/c)^(1/4)*x^(1/2)-1)

________________________________________________________________________________________

maxima [A]  time = 3.12, size = 186, normalized size = 0.91 \[ -\frac {b {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} + 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {\sqrt {b} \sqrt {c}} \sqrt {c}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} - 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {\sqrt {b} \sqrt {c}} \sqrt {c}} - \frac {\sqrt {2} \log \left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {1}{4}} c^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {1}{4}} c^{\frac {3}{4}}}\right )}}{4 \, c} + \frac {2 \, x^{\frac {3}{2}}}{3 \, c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(9/2)/(c*x^4+b*x^2),x, algorithm="maxima")

[Out]

-1/4*b*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) + 2*sqrt(c)*sqrt(x))/sqrt(sqrt(b)*sqrt(c)))/(sqr
t(sqrt(b)*sqrt(c))*sqrt(c)) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) - 2*sqrt(c)*sqrt(x))/sqrt
(sqrt(b)*sqrt(c)))/(sqrt(sqrt(b)*sqrt(c))*sqrt(c)) - sqrt(2)*log(sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x +
 sqrt(b))/(b^(1/4)*c^(3/4)) + sqrt(2)*log(-sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + sqrt(b))/(b^(1/4)*c^(
3/4)))/c + 2/3*x^(3/2)/c

________________________________________________________________________________________

mupad [B]  time = 4.36, size = 54, normalized size = 0.26 \[ \frac {2\,x^{3/2}}{3\,c}+\frac {{\left (-b\right )}^{3/4}\,\mathrm {atan}\left (\frac {c^{1/4}\,\sqrt {x}}{{\left (-b\right )}^{1/4}}\right )}{c^{7/4}}-\frac {{\left (-b\right )}^{3/4}\,\mathrm {atanh}\left (\frac {c^{1/4}\,\sqrt {x}}{{\left (-b\right )}^{1/4}}\right )}{c^{7/4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(9/2)/(b*x^2 + c*x^4),x)

[Out]

(2*x^(3/2))/(3*c) + ((-b)^(3/4)*atan((c^(1/4)*x^(1/2))/(-b)^(1/4)))/c^(7/4) - ((-b)^(3/4)*atanh((c^(1/4)*x^(1/
2))/(-b)^(1/4)))/c^(7/4)

________________________________________________________________________________________

sympy [A]  time = 166.49, size = 180, normalized size = 0.88 \[ \begin {cases} \tilde {\infty } x^{\frac {3}{2}} & \text {for}\: b = 0 \wedge c = 0 \\\frac {2 x^{\frac {7}{2}}}{7 b} & \text {for}\: c = 0 \\\frac {2 x^{\frac {3}{2}}}{3 c} & \text {for}\: b = 0 \\\frac {\left (-1\right )^{\frac {3}{4}} b^{\frac {3}{4}} \log {\left (- \sqrt [4]{-1} \sqrt [4]{b} \sqrt [4]{\frac {1}{c}} + \sqrt {x} \right )}}{2 c^{2} \sqrt [4]{\frac {1}{c}}} - \frac {\left (-1\right )^{\frac {3}{4}} b^{\frac {3}{4}} \log {\left (\sqrt [4]{-1} \sqrt [4]{b} \sqrt [4]{\frac {1}{c}} + \sqrt {x} \right )}}{2 c^{2} \sqrt [4]{\frac {1}{c}}} - \frac {\left (-1\right )^{\frac {3}{4}} b^{\frac {3}{4}} \operatorname {atan}{\left (\frac {\left (-1\right )^{\frac {3}{4}} \sqrt {x}}{\sqrt [4]{b} \sqrt [4]{\frac {1}{c}}} \right )}}{c^{2} \sqrt [4]{\frac {1}{c}}} + \frac {2 x^{\frac {3}{2}}}{3 c} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(9/2)/(c*x**4+b*x**2),x)

[Out]

Piecewise((zoo*x**(3/2), Eq(b, 0) & Eq(c, 0)), (2*x**(7/2)/(7*b), Eq(c, 0)), (2*x**(3/2)/(3*c), Eq(b, 0)), ((-
1)**(3/4)*b**(3/4)*log(-(-1)**(1/4)*b**(1/4)*(1/c)**(1/4) + sqrt(x))/(2*c**2*(1/c)**(1/4)) - (-1)**(3/4)*b**(3
/4)*log((-1)**(1/4)*b**(1/4)*(1/c)**(1/4) + sqrt(x))/(2*c**2*(1/c)**(1/4)) - (-1)**(3/4)*b**(3/4)*atan((-1)**(
3/4)*sqrt(x)/(b**(1/4)*(1/c)**(1/4)))/(c**2*(1/c)**(1/4)) + 2*x**(3/2)/(3*c), True))

________________________________________________________________________________________